新浪中文网

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环r是符合一下接个要求的:

1、a

关于加法成为一个

abel

群(其零元素记作

0);

2、乘法满足结合律:(a

*

b)*

c

=

a

*(b

*

c);

3、乘法对加法满足分配律:a

*(b

+

c)=

a

*

b

+

a

*

c,(a

+

b)*

c

=

a

*

c

+

b

*

c;

如果环

a

还满足以下乘法交换律,则称为“交换环”:

4、乘法交换律:a

*

b

=

b

*

a。

如果交换环

a

还满足以下两条件,就称为“整环”(integral

domain):

5、a

中存在非零的乘法单位元,即存在

a

中的一个元素,记作

1,满足:1

不等于

0,且对任意

a,有:e*

a

=

a

*

e=

a;

6、ab=0

=>

a=0

b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。

造孽啊,曹贼竟是我自己  尘封的仙路  跨越阶层的恋爱  高冷学神之攻略手册  开局成为峰主,打造万古不朽仙门  偏偏宠上你  一本杂录  春过辽河滩  大清话事人  沉睡千年醒来,749局找上门  开局被渣,反手投资女帝无敌  包青天断案传奇故事汇  剑神韩友平第一部  在明末奋斗  柯南!快看,你爸爸过来了!  都市重生:我在七日世界刷神宠  好运撞末日  仙骨  邪灵战神  神奇宝贝:开局十连抽,获得梦幻  

热门小说推荐
武林店小二

武林店小二

江湖日报讯肯麦郎连锁客栈享誉大明各府,其总部却是京城一家名为来福的小客栈。来福客栈在江湖上大名鼎鼎,即便费用高昂,上到各派掌门下到江湖游侠,都挤破脑袋想去来福客栈吃顿饭。记者有幸请到武林盟主,揭开来福客栈的秘密!来福客栈日常一幕少林方丈,你怎么吃饭不给钱啊?偶弥陀佛,出家人身无分文,这顿饭可否算作化缘?不行!武当掌门没钱吃饭,还在后院洗碗呢!你若不给钱,就去洗茅房!来福客栈日常二幕丐帮长老,瞧你样子就没钱吃饭,你来客栈干啥?听闻来福客栈可以拿东西抵押,我这里有本上乘的秘...

抢救大明朝

抢救大明朝

朱慈烺此贼比汉奸还奸,比额李自成还能蛊惑人心!闯王李自成立马虎牙山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的逆贼奸臣刁民一定会想念朕的!大明崇祯皇帝于明孝陵前,痛哭流涕。我冤枉啊!我洪承畴真的不是朱贼慈烺的内应,我对大清可是一片忠心啊!大清兵部...

传奇篮神

传奇篮神

一个浑浑噩噩的少年,在阳台吹风不小心掉了下去,死过一次的他,决定开始改变,故事从这里开始,他就是林浩...

总裁大人超给力

总裁大人超给力

嫁给我,我可以替你报仇。陆白,亚洲第一跨国集团帝晟集团总裁,商业界最可怕的男人。传闻他身后有着最庞大的金融帝国,身边从未有过什么女人,传说他是夏儿想,管他呢,安心地做她的总裁夫人虐虐渣最好不过了。只是婚后生活渐渐地不一样了,看着报纸上帝晟总裁的采访,安夏儿方了你你你什么意思,不是说好我们隐婚的么老...

每日热搜小说推荐